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Introduction:

The primary aim of this research was to develop a suite of computational tools for the
examination of tumor screening data from the NCI’s tumor screening databases. These
tools were designed to easily process data from over one hundred immortalized tumor
cells screened for growth inhibition by over 30,000 synthetic compounds. This analysis
consisted of a self-organizing-map (SOM) clustering of compounds based on their
screening responses. Our results find that clearly defined classes of compounds are

- clustered based on their mechanism of action. Six general groupings were identified
according to the broadly defined putative classes of cellular action for these agents:
nucleic acid biosynthesis, mitosis, kinase and phosphatase signaling pathways,
membrane function (integrity and transport), protein metabolism, and a set of agents
unassigned to these five classifications, that represent future efforts to identify their
cellular function. These results provide a facile means of relating previously screened
compounds to large libraries of untested compounds. This effort will increase
opportunities for the discovery of novel anti-tumor agents




Body:

The research completed over the funding period closely followed the objectives provided
in the statement of work(SOW). The initial aims were to develop computational tools for
the analysis of large biological databases relevant to the discovery of agents with
possible anticancer activity. Much of the initial effort was devoted to a systematic and
thorough analysis of the NCI’s publicly available tumor screening databases. This initial
effort was equally divided into a) the development of database-related navigational tools
for data stratification and visualization, and b) the development of computational means
for assessing the information content of these databases. These efforts revealed the
need for additional computational tools for data examinations and detailed
considerations of noisy data versus meaningful information. All of this effort is
summarized in the attached publication (see Appendix). Two noteworthy points are
appropriate in reference to this publication: its considerable length and the managing
editor’'s willingness top accept a manuscript of this size. The former feature is
appropriate for the breadth of detail necessary for a systematic and comprehensive
analysis of this data. The latter feature was based on the strong supporting information
provided by the reviewers’ of this manuscript for this research effort.

Following the recommended instructions for this report, the accepted manuscript is
included in the appendix. '




Key Research Accomplishments:

e The first comprehensive analysis of the NCI’s tumor screening databases
Over 36K synthetic compounds screened against over 100 tumor cells
¢ The systematic development of methods for assessing quality of data
Noise versus Signal
Effect of missing data
Effect of partial screens against sub-optimal tumor cell numbers
Contrasts with alternative statistical analyses
» Complete SOM organization of biological response for 36K compounds
o Identification of six broadly defined classes of cellular activity
Nucleic acid biosynthesis
Mitosis
Cellular Signaling .
Membrane integrity and transport (apoptosis active agents)
Protein Metabolism Poisons
Agents not in the above classes
 Development of a web-based tools (http://spheroid.ncifcrf.gov) for a wide range of
solicitations of this data
Compound searching and sub-searching
Access to publications related to screened compounds or their mechanism
of action
Access to other databases (pdb, pubmed, unigene, omim)
Visualization of raw data vectors of cellular growth inhibition
Visualization of structural information
Tools for hypothesis generation

Reportable Outcomes:
e Manuscript to appear in The Journal of Medicinal Chemistry.
Title: Mining the NCI’s Tumor Screening Database: Identification of
Compounds with Similar Cellular Activities

¢ Presentation at National Meetings:
Protein Society, 2000 and 2001
Biophysical Society, 2000 and 2001
NIH Division Of Basic Science Annual Retreat, 1999-2001
Era of Hope Meeting, Atlanta, 2000




Conclusions:

Our research effort represents the first comprehensive analysis of the complete set of
compounds available in the NCI’s database of publicly screened compounds. The
novelty of this approach has yielded a unique perspective to the classes of agents
currently available for cancer therapy as well as an assessment of alternative
compounds with potentially comparable cellular activities. These computational tools
have proven quite effective for the identification of putative mechanism of action for
these compounds and the formulation of hypotheses regarding chemical modalities
responsible for cellular activities. Noteworthy amongst our research is the development
of a web-accessible tool (spheroid.ncifcrf.gov) that provides public access to this data as
well as our published results.
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1 Abstract

In an effort to enhance access to information available in the NCI’s anti-cancer drug screening
database, a new suite of internet accessible (http://spheroid.ncifcrf.gov) computational tools has
been assembled for self-organizing-map-based (SOM) cluster analysis and data visualization. A
range of analysis questions were initially addressed to evaluate improvements in SOM cluster qual-
ity based on the data conditioning procedures of Z-score normalization, capping and treatment
of missing data, as well as completeness of drug cell screening data. These studies established a
foundation for SOM cluster analysis of the complete set of NCI’s publicly available anti-tumor drug
screening data. This analysis identified relationships between chemotypes of screened agents and
their effect on four major classes of cellular activities: mitosis(M), nucleic acid synthesis(S), mem-
brane transport and integrity(N) and phosphatase and kinase mediated cell cycle regulation(P).
Validations of these cellular activities, obtained from literature sources, found i) strong evidence
supporting within cluster memberships and shared cellular activity, ii) indications of compound
selectivity between various types of cellular activity and iii) strengths and weaknesses of the NCI’s
anti-tumor drug screen data for assigning compounds to these classes of cellular activity. Subse-
quent analyses of averaged responses within these tumor panel types finds a strong dependence on
chemotype for coherence among cellular response patterns. The advantages of a global analysis of

the complete screening data set are discussed.



2 INTRODUCTION

The vast amounts of data accompanying the post-genomic era have raised many exciting
questions about new experimental designs and methods of data analysis [1, 2, 3, 4]. High-
throughput biological assays [5, 6], methods of chemical synthesis [7, 5] and genome analysis of
protein and gene expression arrays [8, 9, 10] have spawned this explosion of biotechnology data.
The information contained in many of these experiments lies in the diversity of measurements
across different test systems and the utilization of this information as probes into underlying
biological phenomena [11, 12, 13]. Systematic investigations of these patterns offer the promise
of facilitating new drug discoveries and improving the molecular taxonomy for chronic diseases

such as cancer and associated opportunistic infections [14, 15, 16, 17].

Applications of computef-supported analytical techniques combined with interactive and
dynamic data visualization tools are needed to assist in the goals of discovery, decision-making
and explanation [18]. From research in statistical methods that began in the early 1960’s, a
wide-range of tools are now available for the analysis of multi-dimensional data that includes
techniques of hierarchical clustering [19], k-means clustering [20, 21], multidimensional scal-
ing [22], binary deterministic-annealing [23] support vector machines [24] and self-organizing
maps [25, 26]; each method aimed at the identification of pattern similarities between diversity
measures. While each of these methods has a sound foundation in mathematical statistics,
their applications to large biological data sets can be difficult, vary in their suitability to each
design problem, and often lack required assessments in the critical areas of reliability, post-
analysis validations, internal consistency and data conditioning, among other analytical issues.
Of additional importance with respect to the final product (i.e. the clustering), these results
should be readily accessible and provide facile understanding to the intended audience, e.g. the

drug discovery and biochemical communities.

This work describes a new set of computational tools, based on methods of self-organizing
maps (SOMs), and their applications to the NCI's anti-tumor drug screening data. This suite
of tools seeks to identify compounds with similar activities against these tumor cell lines and
thereby facilitate discoveries of potentially new drug leads and new molecular targets. The

report contained herein is divided into two parts. The first part addresses analytical questions




related to data analysis. A number of areas are presented that affect cluster quality, including:
(1) the number of cell lines in the screen; (2) the size of the SOM clustering map; (3) the
treatment of noisy and incomplete data; and, (4) the importance of data conditioning. The
results of these studies establish a foundation for the second part of this report which documents
our analysis of the complete set of the NCli's publicly available drug screening data. This second
section is focused primarily on critical examinations of cluster memberships and validation of
their putative cellular activity in this screen. These results provide a classification scheme
for relating the activity of groups of compounds to cellular processes or, when possible, to
specific molecular targets. Graphical tools have been constructed that serve to aid in data
visualization and data analysis. The suite of tools comprising our approach has been assembled
into an internet accessible methodology (http://spheroid.ncifcrf.gov), referred to as the 3d
MIND (Mining Information for Novel Discoveries) toolkit. While this presentation is focused
on anti-tumor drug screening data, these methods are general and should find applicability in
the analysis of data sets based on a variety of biologically diverse measurements, including
the new generation of microarray data sets and data from molecular targeted high-throughput

screens.

2.1 Screening Data

Conceived in the late 1980’s and implemented in the early 1990’s, the NCl has assembled an ex-
tensive screening database of anticancer compounds and diverse chemicals of unknown biologi-
cal activity tested against tumor cells [27, 28, 29, 30]. This database (http://www.dtp.nih.gov)
contains measures of growth inhibition ([log(GIso)]) total growth inhibition (TGI) and fifty per-
cent cell killing (LC50) for over 100,000 compounds tested in various subsets of 60-100 tumor
cell lines [28]. While all of these measures reflect a variety of biological processes involved in

cellular proliferation, the results reported here are focused on an analysis of the log(GI5) data.

Computer-based tools have been developed that analyze patterns of log(Glsy) measure-
ments against the tumor cells within the screen [27, 3]. Based principally on the analysis
of pairwise statistical correlations between drugs tested against various tumor cell lines, sim-

ilarities in mechanisms of action, modes of resistance and molecular structure have been re-



vealed [31, 32, 33, 34]. While these methods have provided very useful information for relating
molecular structure to its putative biological function [35], they are somewhat cumbersome,
producing lists of compounds whose structural and biological features require extensive manual
analysis. Quantification of the improvements in data analysis resulting from our 3d MIND
clustering methodology is described in the appendix. '
Motivated by the premise that alternative methods of data analysis may be useful for ex-
tracting additional information from the NCI's tumor screening database, we have developed a
suite of tools, based on self-organizing maps (SOMs), useful for data exploration and especially,
its biochemical interpretation via two-dimensional biological response maps. This suite of tools
is focused in the areas of data conditioning, pattern association, visualization and data presen-
tation, with additional functionalities that address signal scaling issues, missing data elements,
and locality/non-linearity features of the data space. As we will demonstrate herein, careful
and critical considerations in these areas can enhance the extraction of additional information
from large, complicated, screening databases as well as provide a general tool well suited for

drug discovery investigations.

3 METHODS

While no standard method exists for the analysis of large and complex data sets, a detailed
understanding of the experimental design and methods of analysis is essential for evaluating the
results of data explorations. With this goal in mind, this section will present a brief description
of the screening experiments, the conditioning of data, and the statistical methods involved in
data analysis and display. This information will provfde a rationale for later design and data

analysis decisions.

3.1 Data Conditioning

The NClI's anti-cancer drug cell screen generates measures of the fifty percent growth inhibition,
log(G1Isp), of selected established tumor cell lines following exposure to test compounds [29, 30].

While the 'raw’ data generated in this screen determines a compound’s potency for growth




inhibition, most of the interest in this data lies in establishing the biological significance of the
cellular response pattern; with the hope of identifying tumor selective reagents, new molecular
targets and new drug lead compounds. We treat this raw data with Z-score normalization to
enhance the biological response signal.
Z-score conditioning of each compound’s raw data against the panels of tumor cells provides
a common mean reference and scale thus enhancing the cellular response signal:
(955 — 95) (1)

2 = )
0j

where z;; is the z-score for compound i, against tumor cell j; g;; is the measured log(GIs)

value; and, g; is the mean and o; is the absolute deviation across all cell types j. Using a

" metric related to data clustering (to be presented later) we find that the Z-score transformed

data improves the quality of the clustering by ~ 15% when compared to the raw data. An
additional consideration for data conditioning involves the intrinsic sensitivity of cell lines to
chemical agents. For example, analysis of the log(GIs) values for the NCI synthetic compound
data set finds the leukemia (LEU) cell panel is most sensitive to chemical agents, whereas, the
non-small cell lung (LNS) panel is the least sensitive. Data normalization facilitates assessment
of the differential growth inhibition across all cell lines, rather than detecting agents active
against only the most sensitive cell lines. Z-score normalization of each cell line's response
to all tested compounds thus establishes a common reference. Alternatively, scaling the raw
data across tumor cell types and across tested compounds provides a uniform means to assess

pattern diversity within the complete set of tumor screening data. *

3.2 Self-Organizing Maps

Traditional methods for mining large screening data sets seek to discover subsets of data where
similarities in response are observed. The initial step in this process requires the selection

of a pairwise measure of pattern similarity that assigns the highest score to the most similar

!Data from all tumor cell lines was used in our analysis. This set consists of 80 cell-lines collected from
leukemia(LEU), non-small cell lung(LNS), small cell lung(SCL), colon(COL), central nervous system(CNS),
melanoma(MEL), ovarian(OVA), renal(REN), prostate(PRO) and breast(BRE) cancer tissues.



data sets. Such pairwise measures include rank correlation and Euclidean, Mahalanobis or
Minkowski measures of distance [19]. These pairwise measures provide a simple and direct
means to identify highly similar response subsets. Limitations in this procedure are known to
occur, particularly when data is contaminated with large amounts of noise, resulting in a greater
likelihood of random statistical correlations, and increased difficulty in determining 'real’ rela-
tionships [19, 36]; a result particularly evident where data cannot be reduced by simple bisection
into groups (i.e. pairwise hierarchical clustering). Methods designed to treat noisy data include
principal component analysis and the related method of singular value decomposition; where
the data are re-expressed along directions that maximize the signal-to-noise ratio [35]. The
self-organizing map (SOM) method [25] has found great utility in studies of voice recognition
and visual processing; data sets which often exhibit large amounts of random noise and missing
data [37, 36]. Designed specifically to deal with extremely noisy and incomplete data sets, the
algorithms associated with the SOM method are well-suited for mining data from the NCl's
anti-cancer drug screen.

The SOM [38] method can be divided into two regimes: clustering in high dimensional
space, and projections into a lower dimensional display space (see Figure 1). This first step
clusters data in its original high dimension space (for the NCl screen N=80.) The SOM
algorithm locates the response vectors in this high dimensional data space by minimizing the

deviation between the data vectors(V7) and response vectors(R*):
VR* oc S R(IV? - RV - RY| (2)
J

where V RF is the incremental change in position of the response vector R, V7 is the set of data
vectors, and ||V? — RF|| is the distance between data and response vector. The neighborhood
kernel function, h(]|V? — R*||), weights the change in the position of the response vectors.
This neighborhood kernel collectively orders the response vectors to mirror the information
contained in the data space [25]. The form of the neighborhood kernel function exhibits a
maximum when the data and response vectors coincide and goes to zero as these vectors
become more distant. Often the neighborhood kernel is a Gaussian function, however, our
analysis finds that Epanechicov function [max(0,1-||V7 — R*||?)] consistently yields improved

clustering, and was used for our analysis.

Fig. 1.




The form of equation 2 determines the position of response vectors that best matches the
data space, or alternatively, how the response vectors partition the data space into clusters (see
Figure 1, Panels B and C). Regions that are rich in data vectors attract many response vectors
and as a result finely divide these regions of high information content. This process can be
contrasted with the more conventional principal component analyses, where data is oftentimes
reoriented, in a linear fashion, on to the space of the top most principal components. The
biochemically important regions of the NCI’s anti-cancer drug screening data are not uniformly
distributed in the 80 dimensional tumor cell space, but rather are contained in densely populated
sub-spaces. This distribution can be quantified by examining the pair-wise Euclidean distance
distribution. The mean pair distance of the normalized log(G1I5) data found to be 10.34+1.57
deviation units compared with the value found with a uniform distribution 21.85 + 1.46. The
SOM transformation stretches these data rich regions, thereby enhancing biochemically relevant
cluster distinctions and matching the underlying data distribution (mean pair distance of the
SOM coordinates is 10.18 & 1.48). A direct consequence of SOM reordered data is the ability
to display these results in an interpretable manner. The method of display is the uniform
projection of SOM clustering in high-dimensional space to a low dimension display space (see
Figure 1, Panel D). This mapping is both simple and retains a great deal of the original high-
dimensional information. Additional details regarding the application of the SOM method to
the NClI's tumor cell screen can be found in the 'Overview’ and 'Tutorial’ sections of the 3d

Mind web pages (http://spheroid.ncifcrf.gov.)

4 RESULTS

We begin with an analysis of tumor growth inhibition by a set of 122 standard anticancer
agents (http://www.dtp.nci.nih) compiled by Weinstein et al. and annotated according to their
putative mechanism of action (MOA) [4, 39]. Figure 1, Panel D, displays the two-dimensional
SOM map for an extended data set comprised of compounds structurally similar to these
standard agents. Consistent with prior studies, these standard agents could be separated
into those with MOA's involving inhibition of mitotic activity and those affecting nucleic acid

biosynthesis [35]. This division is quite sharp, and appears in Figure 1, Panel D, below row



six of the SOM map. Within these two regions of the map, well defined sub-clusters exist
that, upon inspection, consist of structurally similar compounds with stick-figure drawings of
selected cluster members displayed at the map margins. This apparent consistency between
molecular structure and function (putative MOA) was used to develop a metric for detailed
sensitivity studies regarding the choice of parameters for later SOM optimizations and their

effect on quality of clustering.

4.1 Sensitivity Analysis

This analysis attempts to determine the relationship between quality of clustering and choices
in the experimental design parameters of number of cell lines in the screen, size of the SOM
clustering map, treatment of noisy and incomplete data, and importance of data conditioning.
We assess the quality of clustering by correlating the SOM cluster memberships determined
from the log(GIs) (i.e. functional) data with the SOM clustering based on chemical structure
(i.e. structural). This approach assumes that chemical structure, as defined by atom type and
bond connectivity, is a surrogate for the "true’ pharmacophore of the molecular target affecting
cell growth. This is clearly a simplifying approximation for the true 'hidden’ pharmacophore
or molecular target [41]. Indeed, small structural modifications are known, in some cases, to
radically alter biological activity.

To examine the correlation between cluster memberships based on biological response and
chemical structure, we have designed an extended mechanism of action (ExXMOA) data set
which consists of 362 compounds, based on the original set of 122 standard anticancer agents
discussed above, but expanded to include screened compounds with strong structural similarity
(Tanimoto coefficient > 0.9) [42, 43, 44, 45] to these standard anticancer agents. SOM cluster-
ing of these compounds into structural classes is based on the E-state bit vectors available in the
CACTVS suite of computational tools (http://www2.chemie.uni-erlangen.de/software/cactvs).
These bit vector assignments represent 431 chemical descriptors developed within CACTVS,
with characteristics similar to assignments available within the MDL ISIS keys [46]. SOM
clustering treats the vectors of 431 structural descriptors for each agent in the same fashion as

the vectors of log(GIsg) values used for SOM clustering of the biological data. The correlation




between biological clusters and structural clusters was accomplished with an heuristic matching
algorithm. This approach uses dynamic programming to order the structural and functional
clusters to achieve the greatest fractional overlap of cluster members. As an example, con-
sider nine compounds, labeled a through ¢, that are mapped to three clusters according to
their structural bit vectors; [a,b,c] [d,e,f] [g.h.i], and three clusters according to their biological
response; [b,ef.g] [a,c] [d,h,i]. Based on a heuristic of maximal cluster overlap, and using
as a reference the structural cluster order, the functional clusters would be reordered as [a,c]
[b.e,g.f] [d.}r.,i], where the underlined letters indicate shared elements between structural and
functional clusters. The measure of cluster quality is determined as the linear correlation coef-
ficient between these reordered lists of compounds. Although this is a rather general measure
of cluster quality, it correctly reflects the overlap of individual cluster memberships when clus-
tering in achieved with two different methods, i.e. one based on structural descriptors and the
other based on cellular response. Example structure/function (S/F) plots are shown in Figure
2. It should be noted that what is chiefly of interest is the change in S/F correlation, not
the absolute quantity. Therefore, any measure that accurately reflects relative correlation will
serve as a surrogate marker for quality in the sensitivity analysis. Alternative assignments of
structural bit vectors (i.e. MDL keys) or using the biological clusters as the 'reference’ order

does not significantly alter the following results.

Table | lists the correlations between cluster memberships determined from biological re-
sponse data [log(Glso)] and chemical structure (bit vectors) for different data conditioning
treatments. We have found a 15% [(0.9002-0.7820)/0.7820] improvement in the correlation
coefficient with the Z-score normalization over an analysis based on raw data. This improve-
ment is statistically significant, with an ANOV1 p value of 1.7e-15; a clear indication that
Z-score normalization enhances the quality of clustering. In addition to Z-score normalization,
the magnitude of any component of a data vector has been capped at a value of £3 absolute
deviation units from the vector mean. Capping prevents the difference between two data vec-
tors being dominated by a single or a few cell lines which have extreme values. Avoiding strong
outliers by data capping improves the S/F correlation by 2.0% [(0.9185-0.9002)/0.9002]. This
apparently small improvement is, however, statistically significant, with an ANOV1 p value of

4.4e-6, and has been adopted as a feature of data conditioning.

Fig. 2.

Tol. I



Another important design choice addresses the treatment of missing data. Oftentimes
missing data are replaced by their mean value determined from existing data. Our analysis
indicates that this approach can substantially distort the information contained within the
actual data. Retaining missing data elements as unknowns, rather than replacement by their
vector mean, improves the S/F correlation coefficient by 6% [(0.9185-0.8654)/0.8654]. This
improvement is statistically significant, with an ANOV1 p value of 7.6e-14, and supports our
choice to treat missing data as unknown. Figure 2, Panels A, B and C, display the S/F
correlations for selected cases of data conditioning. Panels A and B represent the best and
typical S/F correlations, respectively, for applications of Z-score normalization, capping and
no substitutions for unknowns(NaN). Panel C is an example where a poorer S/F correlation

results when unknown data are replaced by their group mean.

4.2 Map Dimensions

The possibility that map dimensions may affect the quality of the clustering was investigated us-
ing S/F correlations. The SOM method contains a heuristic for the ratio of the two-dimensional
SOM map dimensions based on the ratio of the two largest eigenvalues as the linear SVD so-
lution to the data set [25]. Using this heuristic and the EXMOA data set, the SOM analysis
recommends a map size of 17x9, based on an eigenvalue ratio of 1.89. Figure 3 displays
the dependence of the S/F correlation coefficient for a selection of map ratios. The ratio
that maximized the correlation coefficient matched the heuristic at 1.89. Ratios above and
below this value generate maps with a concomitant degradation in their S/F correlation. In
connection with the non-square map ratio of 1.89, the clustering algorithm does not use " wrap-
around” boundary conditions thus retaining the separation of the map edges and preserving

the asymmetry introduced by a rectangular map

4.3 Number of Clusters

Perhaps the most controversial part of cluster analysis involves determination of cluster num-
ber [47, 48, 49, 50]. One popular approach repeatedly samples single linkage hierarchical cluster

trees generated by removing one or more data elements. Nodes that occur most frequently
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Fig. 8.




in the sample trees define the number of clusters. Alternative methods use a cubic clustering
criterion [51, 35] to estimate cluster number by minimizing the within cluster sum of squares
while using standard statistical tests to determine the significance of error reduction. More
recent methods evaluate statistical significance of cluster number by evaluating the distribu-
tion of correlations in a large number of randomized trials [23, 52]. The approach used here
calculates the dependence of the S/F correlation on cluster size, and the uses the percent of
maximal clustering to determine cluster number.2 Using the EXMOA data set, SOM clusters
were generated for a range of map dimensions, and the results are displayed in Figure 4. Based
on this result, a cluster number above 110 is sufficient to achieve at least 99% coverage of S/F

correlations. Our selection of 153 (17x9) clusters exceeds this criterion.

4.4 Number of Cell Lines

Our analysis explored the role of number of tumor cell lines in our SOM analysis using our
measure of S/F correlation. The S/F correlation with varying the number of cell lines, shown
in Figure 5, has two or three basic regimes. Below ~ 20 cell lines the S/F correlation drops off
dramatically, between 20-50 cell lines the correlation rapidly increases, while for greater than
70 cell lines the correlation achieves a maximum. Although further analysis of this result will
not be presented here, there is a clear indication that a near optimal clustering result can be

achieved with fewer than the 80 tumor cell lines analyzed herein.

4.5 Robustness

We have investigated the behavior of the SOM method towards noisy and degraded data.
Figure 6, Panel A shows a sigmoidal decrease in S/F correlation with decreasing completeness
of the input data. This data set was degraded by systematically removing data elements with
the most extreme Z-score values. The results show that from 100% thru 70% completeness of
data the S/F correlation is resistant to this degradation. Below 70% the correlation coefficient

rapidly decreases; approaching a minimum at 0.45. This analysis illustrates the relation between

2In SOM clustering cluster size is equivalent to map dimensions. Percent of maximal clustering measures

closeness to the asymptotic limit.
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strong signals, as measure by extreme values of absolute deviation Z-scores, and the quality
of the clustering. The behavior of the S/F correlation with degraded data is relatively stable
against data sets which exhibit greater than a 10% coefficient of variation (see Figure 6, Panel
B). Below a Z-score of ~1.1 absolute deviation units the S/F correlation is drastically decreased.
Consistent with intuition, a data vector with a large amount of diversity (stronger signal) can
be more easily assigned to a cluster, when compared to data vectors with a small absolute
deviation. Based on this result, our analysis excludes data vectors with an absolute deviation
below 8%.

5 COMPLETE MAP

The SOM analysis of the MOA and ExMOA data sets established important guidelines for ana-
lyzing all the publicly available data for synthetic compounds screened against the NCI's tumor
cell panel. To our knowledge a simultaneous analysis of the complete screening data set has
not appeared in the literature. As our analysis will demonstrate, the ability to simultaneously
analyze this data offers a unique perspective into the complete range of biological response
patterns for these tumor cells and provides valuable information for extracting additional de-
tails about cellular activities, assessing similarities and differences in response patterns for these
activities and determinations of unique and under explored regions in cellular response space.
The initial screening data set included measures of cytotoxicity for ~33K (32,918) compounds.
Filtering of this data, based on retaining only those data vectors with greater than 8 percent
absolute deviation, reduced this set to ~20K (19,867) compounds. The SOM analysis gener-
ated a map with dimensions 41 rows by 26 columns, to yield 1066 map clusters (see Figure
7).

The SOM map represents an alternative to the more classical use of dendrograms for dis-
playing cluster results. As was mentioned earlier, the anti-tumor drug screening data set does
not appear to lend itself to hierarchical organization, where each clade’s position is assigned
only on the basis of its closest neighbor. The two-dimensional SOM representation allows

clusters to have upwards of 6 neighbors, for the hexagonal representations used here. The
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distance between neighboring map loci® is indicated by the connecting color (in figure 7, close
in distance is shown in red, far apart in violet.) As an alternative to presenting the details of
each of the 1066 clusters on this map, fifty regions have been defined that group individual map
nodes with the most similar response profiles. These regions are similar to individual clades of
a hierarchical dendrogram, however their organization is not restricted to the simple division
into groups. Using this convention, clusters on the complete DTP map can be assigned to
six functional categories according to the apparent cellular activity of the compounds within
each of these six functional clusters. Using a mnemonic convention, we identify six classes of
cellular of cellular activities: mitosis(M), nucleic acid synthesis(S), membrane transport and in-
tegrity(N), phosphatase and kinase mediated cell cycle regulation(P) and two remaining regions
we arbitrarily have labeled Q and R. Justifications for these broadly assigned cellular activities
will be obtained solely from literature sources. Despite these rather general assignments of
cellular activity, this convention serves to organize the large amounts of data in this screen.
Experimental validations of these putative cellular activities, in cases where actual molecular
targets have been identified, will be reported. However, in the absence of published reports,
these classifications should be treated as speculations that serve as hypotheses for further ex-
perimental testing. While the absolute boundaries between classes, as far as map position and
the division into six classes are somewhat arbitrary, they provide a useful framework for discus-
sion of the anti-cancer drug screen results. It should be noted that the mapping, clustering,
and other derived data are independent of the division into classes and regions of the map.
Following our mnemonic convention, Region M consists of two subregions, M; and M,
located at the top left corner of the map. Moving diagonally from this corner towards the
lower right-hand corner, are Regions P (subregions P;-Py4) and N (subregions N;-Nj2), above
and below the diagonal, respectively. Region S (subregions S;-S;) appears at the lower right
portion of the map, separated from Regions M, N and P by Regions Q (subregions Q;-Q7)
and R (subregions R;-Ry). Figure 8A shows the projection of 171 standard anticancer agents
that have been clinically evaluated [53, 54, 55] consisting largely of antimitotic compounds

which are located in region M of the complete DTP map, and agents that affect nucleic acid

3The 1066 map clusters will be referred to as loci, and will be identified by their row and column

coordinates. This convention will provide a convenient reference to map positions.
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biosynthesis which are, with a few exceptions, located in Region S. Below, we will more fully
characterize Regions M and S and portions of Regions P and N for cellular activity by presenting
a comprehensive analysis of within-cluster members and literature reports of their putative
cellular actions. To facilitate reporting of these results, map loci containing compounds with
similar cellular activity, will be identified by color-coded hexagons, placed at their respective
map positions as shown in Figure 8B. Thev reader interested in all 1066 clusters on the complete

DTP map may solicit our web site at http://spheroid.ncifcrf.gov.

5.1 Region S: Nucleic Acid Synthesis

Considerable research interest has been directed into selectively targeting tumor cells using
antimetabolites of purine and pyrimidine nucleotide metabolism [56, 57, 58]. Three metabolic
targets are found within the purine and pyrimidine class of antimetabolites: 1) agents that
interfere with the synthesis of RNA and DNA precursors, 2) direct inhibitors of DNA synthe-
sis and 3) compounds that are incorporated into RNA and DNA which later disrupt cellular
processes. The first class of inhibitors includes the antifolates and inhibitors of rate-limiting
pyrimidine and purine de novo synthesis enzymes. These compounds are located in subregions

S and Ss, and appear as purple and red hexagons in Figure 8B.

Antifolates: More than fifty dihydrofolate reductase (DHFR) inhibitors are all locally clustered
in subregion S, at the loci k36.21, k37.21, k37.22 and k38.20%. This list of tetrahydrofolate
(THF) analogs include methotrexate, trimetrexate, triazinate, methasquin, piritrexim isethion-
ate, pyrimethamine, PT523, and pyrimethamine. These antifolates are believed to function
by binding to DHFR, disrupting the thymidylate synthase(TS) complex which results in the
depletion of dTMP pools and, thus, inhibiting de novo pyrimidine nucleotide biosynthesis. In
addition, certain THFs act as competitive inhibitors by directly binding to folate-dependent
enzymes, such as TS, and interfering with co-factor binding.

The complete DTP map further separates the THF antifols into two overlapping classes:

4Each locus in the SOM maps is identified by its coordinate locations, row.column. For example the cluster
at locus row=10 and column=20 is referred to as k10.20. This convention will be adopted throughout the

text.
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those which use the reduced folate carrier pathway, and those which can transverse the cellular
membrane (by potocytosis via folate binding proteins) and/or through passive diffusion [57].
The classical antifolates, such as methotrexate (MTX), contain a glutamic acid tail and there-
fore require the reduced folate carrier pathway. Mutations in this pathway are a common cause
of antifolate resistance [57]. The class of tetrahydrofolates which contain the glutamic acid
tail are located chiefly in subregion S, at the loci k37.22 and k38.20. By contrast, THFs which
do not contain the glutamic acid tail, such as the small lipophilic compound pyrimethamine,
are located in subregion Sy, at k36.21 of the complete DTP map (see Table II.) These non-
glutamate compounds retain their ability to kill cancer cells even in the presence of an inactive
reduced folate carrier pathway. Therefore, cell lines that have mutations in the reduced folate
carrier pathway are insensitive to MTXs while still sensitive to the pyrimethamines. The data
vectors for the clusters k38.20 and k36.21 are consistent with these differences in cell sensi-
tivity; their tumor cell patterns differ chiefly in the response of K-562 human leukemia cells,
a tumor cell line that is known to be very sensitive to the pyrimethamines, while insensitive
to MTXs: a result consistent will the above described differences in cellular transport and
other related alterations such as target enzyme amplification and reduced cellular capacity for
polyglutamation. Table Il displays examples of compounds located at each of the regions in

the compete DTP map.

UMP Biosynthesis: An important class of anti-cancer agents inhibit biosynthesis of the

DNA/RNA precursor uridine monophosphate(UMP). These agents exert their cytotoxic mech-
anism by depletion of UMP pools thereby halting DNA/RNA synthesis. Upstream of the
biosynthetic synthesis pathway of UMP are the enzymes carbamoyl phosphate synthetase
Il, aspartate transcarbamoylase, dihydroorate dehydrogenase, OPRTase, and orotidyl decar-
boxylase [57]. Our complete DTP map locates inhibitors of these enzymes in subregion S,
chiefly in loci k35.22, k36.22, and k37.22, identified as red hexagons in the lower right por-
tion of Figure 8B; as would be expected for DNA/RNA antimetabolites. Specifically the
enzymes/inhibitors are: carbamoyl phosphate synthetase li/acivicin (at k35.23 and k38.20),
aspartate transcarbamoylase/PALA (at k35.21), dihydroorate dehydrogenase/brequinar (at
k36.22 and k37.22), dihydroorate dehydrogenase/dichloroallyl lawsone (at k35.22), and orotidyl
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decarboxylase/pyrazofurin (at k36.22).

CTP-S: Cytidine triphosphate synthetase (CTP-S) is an important target for cancer chemother-
apy. Compounds that affect pyrimidine biosynthesis by inhibiting cytidine ;criphosphate syn-
thetase conversion of UTP to CTP are found centered at locus k38.20, at the bottom of
subregion S4, shown as red hexagons in Figure 8B. Some of the well characterized chemical
agents which inhibit CTP-S are cyclopentylcytosine (at k37.19, k37.21, k38.19 and k38.20),
3-deazauridine (at k36.22 and k41.20), gemcitabine (at k39.25 and k41.24) and acivicin (at
k35.23 and k38.20). "

The CTP-S inhibitor, acivicin, also has activity against carbamoyl phosphate synthetase I,
as mentioned above. This behavior is common among nucleic acid affecting agents. Many of
the chemical compounds which affect DNA/RNA biosynthetic enzymes have multiple mecha-
nisms of action owing to their nucleic acid moieties. We have observed the convergence in the
clustering of nucleic acid agents with increasing test concentration. An example of this behav-
ior can be seen in subregion S, at loci k37.21, where high test concentrations of antifolates
(MTX's and pyrimethamines), CTP-S inhibitors, and IMP dehydrogenase (IMPDH) inhibitors
are all co-clustered. At lower concentrations, where the inhibitory effect results in more selec-
tive targeting, the various classes of chemical agents are separated into clusters which better

reflect their different molecular targets.

In general, individual loci of the map appear to represent cellular response mediated pre-
dominantly by a single molecular target or pathway. Other loci apparently are comprised of
compounds with cellular activity due to joint action at multiple targets. In certain situations
experimental evidence is available to document concurrent operation of multiple mechanisms
to create "overlapping phenotypes of multidrug resistance” [59]. Thus far, we have only ex-
amined a subset of the 1066 map loci. It is likely that there exist map loci which cannot yet
be associated with any molecular mechanism which represent novel and unknown anti-cancer
drug classes, it is also likely that loci exist which represent a combination of activities similar

to overlapping phenotypes resulting from drug resistance.

S: The clusters associated with compounds active against thymidylate synthase(TS) are
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centered at subregion Sy in the neighborhood of k40.20, located as red hexagons in Figure
8B. The TS affecting clusters are dominated by 5-fluorouracil (5-FU) and structurally related
compounds. 5-FU’s cytotoxic mechanism is via TS inhibition and through direct incorporation
into RNA and DNA. The thirteen other compounds found co-clustered with 5-FU are all
fluorinated uracil and polyethylene glycol conjugates with molecular weights ranging from 1480
to 6640 Daltons. The location of this group of clusters, adjacent to the CTP-S inhibitors
at k41.20, suggests that similarities in their cellular response patterns accompany defects in
interconversion between uridine phosphate moieties (UTP and dUMP) to cytidine(CTP) and
thymidine(dTMP) species, respectively.

Purine Biosynthesis: De novo purine biosynthesis is another target for anti-cancer agents.

A number of clinically important drugs inhibit the formation of inosinate monophosphate, a
precursor to the formation of purine nucleotides. These compounds are located in the lower
right portion of Figure 8B as purple hexagons. Compounds which inhibit the IMP synthesis
pathway enzyme, glutamine amidotransferase, are centered at locus k37.20 in subregions Sy
and Ss. These agents include 6-diazo-5-oxo-L-norleucine (DON, at k37.21 and k38.19), L-
azaserine (at k37.20), AT 125 (at k35.23 and k38.20), and hydroxy AT 125 (at k37.20).
Inosinate monophosphate dehydrogenase (IMPDH) is an important enzyme in the de novo
biosynthesis of purine nucleotides. Agents that are purported to inhibit IMPDH by binding to
its NAD+ co-factor site, tiazofurin and selenofurin [60], are found in Region Qs at loci k38.13
and k37.14 (see Table Il1l.) A related agent, cordycepin, is also found at k37.14, suggesting a
different molecular target for tiazofurin and its analogs [61]. In direct contrast to the tiazofurin
response, the NAD+ analog, mycophenolic acid, is located in Region S; at k37.20, along
with the IMP upstream inhibitors described above; a result consistent with its role as a purine

anti-metabolite.

In addition to the NAD+ mimetics described above, a number of agents inhibit IMPDH
by binding to its purine pocket. These purine analogs, such as 6-mercaptopurine and 6-
thioguanine, are also located in Region Sg around the neighborhood of k34.17 and k35.18.
As observed with the IMP upstream inhibitors, IMPDH and mercaptopurines, agents that

affect purine biosynthesis or exogenous nucleic acid incorporation, are found on the complete
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DTP map in subregions spanning S5, Sg and S7; as would be expected for nucleic acid anti-

metabolites.

Ribonuclease Reductase: A functioning ribonuclease reductase(RR) is necessary for the

biosynthesis of both deoxypurine and deoxypydimidine nucleotides. To perform its role of re-
ducing nucleotides, RR requires a functional iron center. The complete DTP map separates RR
inhibitors into two classes: (i) Hydroxyurea and similar compounds pyrazoloimidazole (IMPY),
and guanazole; located in subregion S3 at k39.25, identified by the red hexagon in subregion S5
of Figure 8B, from (ii), compounds that act by chelating metals; located at k32.22 in subregion
S, shown as the single light red hexagon in Figure 8B. The metal chelators include deferoxam-
ine, and terpyridine and its analogs (see Table IV.) It is interesting to note the co-clustering,
at k39.25, of hydroxyureas with the DNA polymerase alpha inhibitor aphidicolin and its deriva-
tives. This location, near the lower right edge of the complete DTP map, is characteristic of
DNA replication inhibitors such as anti-topoisomerases and alkylating agents; to be discussed
further in the following sections. Inhibition of DNA polymerase has also been reported with
deoxycytidine analogs such as cytarabine (ara-C). Cytarabine is found at locus k36.24, along
with its derivatives adamantoyl cytarabine, palmitoyl cytarabine and fazarabine [62] and other

similar compounds.

5.2 Subregion S;: Topoisomerase Inhibitors

DNA topoisomerases are enzymes which catalyze DNA strand breaking and unwinding during
cellular replication and RNA transcription [63, 58]. In eukaryotic cells, DNA topoisomerase |
(topo ) and topoisomerase |l (topo I1) each perform similar but distinctly different roles in DNA
unwinding. Topo | catalyzes single strand 'nicking’ which allows supercoiled DNA to unwind,
and is relatively constantly expressed during the cell cycle [57]. In contrast, topo Il is most
highly expressed at the end of the S phase of cellular replication and throughout the G2 phase,
to facilitate chromosomal duplication by relaxing and unwinding the DNA duplex [57]. The
molecular mechanism of DNA unwinding also differs between these two enzymes; topo | nicks
a single strand to allow DNA unwinding, whereas, topo Il uses ATP to pass one DNA strand

through its complementary strand and then rejoin the ’break’. SOM clustering of compounds
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active as inhibitors of topo | and Il are found in separate, but adjacent regions in the nucleic acid
portion of the complete DTP map. Topo | inhibitors, consisting of the campothecin analogs,
are found in the lower part of subregion S3, within adjacent loci at k40.24 and k41.24, identified
as dark brown hexagons in Figure 8B. Topo Il inhibitors are located in two overlapping groups:
the 'etoposide’ group clustered in subregion S3 at loci k38.26, k39.26, k40.24, k40.25, and
k40.26; and, the 'anthracycline’ group also in subregion S3 at loci k41.25 and k41.25, shown

as light brown hexagons in Figure 8B.

Other agents similar to these topoisomerase inhibitors include the bleomycin family of DNA
damaging antibiotics. These compounds are found in Region S; at locus k40.22, appearing as
a dark brown hexagon in Figure 8B. In addition, the classes of DNA intercalators, ellipticine
and methoxyellipticine, imidazoacridiones (e. g. NSC645812), and triazoloacridiones (e. g.
NSC645827) centered around k41.16 in subregion S7, and the acridines, such as quinacrine
mustard, near k41.17 and k41.18, are shown in Figure 8B as green hexagons as the bottom of

the map.

Bisantrene: While bisantrene is regarded as a putative topoisomerase inhibitor, its cluster
position is not associated with other topoisomerase inhibitors. Rather it is found in the mi-
totic/membrane portion of the complete DTP map, in subregion M, at k11.3. This result
suggests that under the conditions of the DTP cell-line screen, bisantrene does not function as a
topoisomerase inhibitor. Confidence in the reliability of bisantrene’s cluster location is supported
by its three screening measurements at differing test concentrations [log(highest test concen-
tration) = -5.0, -4.0 and -3.6]; all of which cluster at k11.3. A number of bisantrene analogs
are also found at k11.3, which include the bis nitrogen chain containing anthracenes, anthracy-
clines, and acridines. Other well characterized antibiotics, co-clustered at k11.3, are puromycin,
an actinomycin D derivative, and tubulosine. The actinomycin D derivative has recently been
implicated as a blocker of Grb2-SH2 access to the Shc/Ras and Shc/phosphatidylinositol 3-
kinase pathways (PI3K) [64]. Additional support for this role is found in neighboring clusters,
which include other anti-neoplastic antibiotics, such chromomycin A3. The following sections

will amplify the putative action of anti-neoplastic antibiotics on the NCI's panel of tumor cells.
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Fostriecin: The compound fostriecin has also been identified in the literature as a topo Il
inhibitor [65] based, in part, on similarities in tumor cell responses when compared to other
nucleic acid affecting agents [54, 57]. The SOM analysis, however, places fostriecin in the
portion of the complete DTP map associated with kinase and phosphatase mediated cellular
regulation (subrégion Pj3) at cluster k6.8. Recent literature confirms this placement with
reports of fostriecin activity against protein phosphatase 2A [66, 67], while simultaneously
demonstrating a lack of topo Il activity [68]. Additional inspection of agents in k6.8 further
supports this activity by co-clustering the compound cytostatin, which is a known to inhibit
cell adhesion to the extracellular matrix by selectively inhibiting protein phosphatase 2A [69].
This observation illustrates the power SOM clustering and its application to the complete data
set available in the NCI's tumor screen. The ability to inspect the global response of tumor
cells to these agents provides information about locally clustered compounds, which, in turn,

can be used to assess cellular activity by comparisons to inhibitors of known molecular targets.

5.3 Subregion S;: Alkylating Agents

Alkylating agents introduce exogenous covalent bonds in nucleic acids and associated proteins
which later interfere with transcription and translation. These agents are clustered adjacent
to the topo Il inhibitors, consistent with their similar mode of action, and appear as orange-
brown hexagons at the lower right of Figure 8B. As observed for inhibitors of nucleic acid
biosynthesis, cluster separations are also observed within families of alkylating agents, accord-
ing to their functional subtypes. Alkylating agents with a bi-functional electrophilic leaving
group, such as busulfan, thio-tepa, chlorambucil, and di-platinum compounds, are all found
in subregions S;, S; and S3. The nitrosourea alkylating agents, asaley and the mitomycins
(which are antibiotic akylating agents) are found in subregion S; at k38.23 and k41.25. Bi-
functional alkylating compounds that contain two platinum atoms are found in neighboring
clusters at k37.25 and k38.25. The monoplatinum compounds are found in four main clus-
ters which differ in their chelating moieties: diaminocyclohexyl at k39.19, diaminoamino at
k39.23, bis(aminomethyl)cycloalkylsilyl at k35.25, and imidazolyl at k32.26. A clear exception
is found with the class of nitrosourea alkylating agents; CCNU, methyl-CCNU, BCNU, and
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cis-4-Hydroxy CCNU. These compounds are not found in Region S, but in subregions N5 and
N, at k22.6 and k23.6, respectively. This result suggests a cellular activity different from DNA
alkylation, possibly by alkylating proteins within regulatory cellular pathways. The compounds
that co-cluster with these CCNU's are phenazinomycin and 2-hydroxy-4,6-dimethylchalcone,
the latter compound derived from the parent chalocone molecule, which, itself, is clustered with
the DNA-methylation agents in the nucleic acid portion (Region S) of the map. This represents
an example where the mode of action of the parent compound has been substantially altered

via chemical modification.

6 Regions M and N: Mitosis and Cellular Membranes

Agents that impact arrest in the mitotic phase of cell division are found in the upper left portion
of the complete DTP map in Region M, identified in Figure 8B by three differently shaded blue
hexagons. The bulk of compounds in Region M interfere with the microtubule/actin cellular
framework, consisting of taxanes (at k9.1 and k9.2), colchicines (k6.1), vinca alkyloids (k7.1),
trimethoxystilbenes and peltatins (at k1-3.1-5) and other compounds such as the macrolide
rhizoxin (k5.1) and nocodazole(k1.1) (see table V.).

Compounds that affect cellular membranes are found in the Region N. In particular, at
the left edge of subregion Ng and the bottom of subregion M, are cationic surfactants that
appear to directly act on the lipid bilayer to disrupt cellular membranes (shown in the light
green hexagons at the upper left edge of Figure 8B.) Typically these compounds contain a
positive charge and a strong hydrophobic moiety. An example would be a positively charged
nitrogen embedded in fused planar aromatic rings. Additional examples of cationic surfac-
tants are located in nodes along a line extending from k13.1 through k18.1 in Regions M,,
Ng and N4. These clusters include the arylphosphoniums, arylquinoliziniums, dequaliniums,
berberins, and charged ellipticines (e. g. NSC39310, NSC166454, NSC5355, and NSC264137
respectively.) Separation of tumor responses on the basis of charged and uncharged ellipticines
has been previously reported by Shi et. al [33]. Other compounds in this region include a
series of dihydroxyanthracenones at cluster k15.2, also known to have antipsoriatic activity via

5-lipoxygenase or other biosynthetic enzymes [70]. However, the location of these compounds
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in the N region suggests a role in damaging membranes via generation of oxygen-radicals; a well
known side-effect of some antipsoriatic agents. This is an example where the cell screen map
can be used for drug discovery; via, for example, locating anthralin-like compounds not found
in the membrane damaging region. Validation of this possibility could lead to the discovery of

new antipsoriatic agents with reduced side effects.

Another mechanistic class of membrane targeting agents are ion channel inhibitors, located
in Region Nj, of the complete DTP map, shown as yellow hexagons in Figure 8B. Exam-
ples include the K/Ca2+ channel blockers, pimozide, at k9.7, verapamil, at k9.8 and k11.8;
the tetandrine class of calcium channel blockers, at k8.7, k7.8, k6.6; including tetrandrine,
fangchinoline, oxyacanthine, funiferine, dauricine, at k11.6, chloroquin diphosphate, at k9.7
and prazosin, at k7.4, all located in subregion Ny, (see Table VI.) Antihistamine H1 antago-
nists, like diphenylhydramine, are also found in this region, at k11.8. Their cellular activity is
likely to perturb ion levels, while acting as H1 agonists [71], or as ion channel inhibitors [72, 73].
Another class of compounds mapped to subregion Ny, is the phenothiazine family of dopamine
antagonists (prochlorperazine, fluorophenothiazine, trifluopromazine, and clopenthixol) and the
compounds pimozide (k9.7), metoclopramide (k9.12), and the spiperones (k8.11). Mapping
these compounds to subregion Njg is most likely due to their effect on ion homeostasis.

It is instructive to note that the thioxanthene, lucanthone, which is generally accepted to
act as a topo Il inhibitor, also maps to subregion Ny at k10.7. Its location in Region N,
and its structural similarity to phenothiazines, suggests action as a membrane disrupting agent
under the conditions of the DTP cell screen (see Table VI.) Moreover, thioxanthenes which
contain a hydroxyl moiety, such as hycanthone, are projected in Region S. These thioxanthenes
are further subdivided into 7-hydroxy compounds in subregion S3 at k39.26 and 4-methoxy
compounds ~ k39.16 in subregion S;. Subregion S; corresponds to topo Il inhibitors, such as
menogaril and hydroxydaunorubicin, while subregion S7 includes compounds belonging to the

planar aromatic class of intercalators.

Agents known to affect the Golgi complex are mapped to Region N and are displayed in Ta-
ble VII. Examples include brefeldin A and its analogs; found in subregion Ny; at k12.10. Other
compounds known to disrupt the Golgi complex are found in loci roughly along a line extend-

ing from k11.12 through k28.2 through the middle of Region N, shown as maroon hexagons
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in Figure 8B. These agents include cytochalasins D,E,H (k11.12), okadaic acid (k16.6 and
k10.1), limaquinone (k17.8), ilimaquinone (k19.5), avarol (k21.5) and cytochalasin A (k24.2
and k28.2). In addition to okadaic acid found at k10.1, the rough endoplasmic reticulum
agent, thapsigargine, which targets Ca®* transport molecules, is found at k9.3 [74, 75]. We
note the correspondence between agents that affect the Golgi complex and those that disrupt
the actin cytoskeleton. Co-clustered with cytochalasins D,E,H at k11.12 are the cucurbitacins,
dolastatin 11, a jasplakinolide, and pectenotoxins, which are known to disrupt the actin cy-
toskeleton [76, 77, 78, 79]. The mechanistic coupling between the Golgi complex (and other
membrane organelles), actin, and ion channels has only recently been indentified [80, 81, 82].
These published findings are consistent with their SOM map location in subregion N10, which

is at the confluence of the mitotic, membrane and cell-cycle regions (see Figures 7 and 8B.)

7 Region P: Cellular Regulation and Apoptosis

Kinases and phosphatases associated with apoptosis and cell cycle regulation are mapped to
the upper portion of the complete DTP map in Region P (see Figure 7.) Selected compounds
in this region are also listed in Table XIIl. Within this large portion of the map are compounds
that function as protein kinase C activators, in subregion P;3, at k6.9, shown as pink hexagons
near the top of Figure 8B. These compounds include the phorbols (mezerein, huratoxin, and
prostratin) [83], gnidimacrin [84], and cytoblastin [85]. Adjacent to k6.8 is the previously de-
scribed class of protein phosphatase 2A inhibitors, fostriecin and cytostatin [66, 69]. As noted
earlier, these compounds have often been considered as topo Il inhibitors [86, 54], however, lit-
erature now supports their role as a protein phosphatase 2A inhibitor. The neighboring cluster,
k7.11, contains miltefosin and similar long chain alkylphosphocholines, such as perifosine. The
location of this cluster, away from sub-regions Ng and M,, suggests a companion activity in
cell cycle regulation; consistent with literature reports supporting a cell cycle role for alkylphos-
phocholines [87, 88]. KRN5500 [at log(high test concentration)=-8.0 M] is clustered with
the akylphosphocholines in subregion P, at k7.11. KRN5500 and the akylphosphocholines
share a long lipid chain and have potentially positively charged 'head’ groups. KRN5500 has
been shown experimentally to affect the Golgi complex [89]. It is likely that KRN5500 shares
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a dual mechanism of action that includes the akylphosphocholine’s molecular target and the
Golgi complex. Two of the three data vectors for KRN5500 are clustered in the Golgi dis-
rupting region of the map, near brefeldin A, in subregion Ny; at k11.14 [at log(high test

concentration)=-7.0 and 4.3]; also co-clustered with its structural analog, septacidin.

Other kinase active compounds in subregions Py and Pj3 include: bryostatin 1, at k4.11,
which targets protein kinase C[90, 91], forskolin, at k5.12, which induces cAMP-like kinases[92],
wortmannin at k5.12, a phosphoinositide 3-kinase (PI3K) inhibitor[93], and ursolic acid, at
k4.11, which is involved in caspase activation and down regulation of the apoptotic protective c-
IAPs proteins[94]. It is interesting to note the co-clustering of forskolin and wortmannin at k5.12
and the near-by clustering of the phorbol esters (k6.8). Forskolin is known to up-regulate cAMP
and enhance kinase activity and exert its influence via ion channels [95, 96] while Ecay et. al. [97]
reports on the wortmannin inhibition of forskolin-stimulated chloride secretion. Simiiarly, the
results of Yamashita et al. [98] show that forskolin and phorbol esters to have opposite effects on
the expression of mucin-associated sialyl-Lewis(a) in pancreatic cancer cells. Thus, exploration
of co-clustered compounds may further illuminate known mechanistic pathways involved in

cancer chemotherapy and reveal previously unknown molecular interactions.

7.1 Subregions P; And P;: Cyclin Dependent Kinase Inhibitors

Subregions P; and P, are identified as rich in cyclin dependent kinase (CDK) inhibitors. In-
cluded in these regions are the staurosporines (including UCN-01), quinazolines, paullones,
flavopiridols, quercetins, and others. Localization of these compounds to this map region can
be attributed, partly, to a high sensitivity on these compounds to the small cell lung(SCL),
central nervous system(CNS), and renal(REN) cell panels, while at the same time exhibiting
an insensitivity to the leukemic(LEU) and colon(COL) cell lines. Our analysis finds that Re-
gion P has been less completely probed when compared to Regions M and S [99]. The most
extensively explored compounds in this Region P include ~100 flavopiridol /quercetin analogs,
~15 staurosporine/UCN-01 analogs, and ~10 paullone analogs. In contrast, other compounds
in this region, that may also function as CDK inhibitors, are represented by just a few measure-

ments. Further generalization about these sparsely sampled regions in response space, beyond
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our suggestion that they may potentially target cyclin dependent kinases, must await additional

experimental verification.

A contributing factor in assessing the cellular activity of poorly investigated spaces in Region
P is the possibility of multiple cellular targets. This is often true for small molecules, such as the
flavopiridols, and especially true for purine mimetics which inhibit CDKs by binding their ATP
pocket, as with the quinazolones and olomoucine analogs described above. In these situations
the precise identification of cellular activity is difficult, however, the co-clustering of families of
compounds provides evidence of their cellular activity. For example, the relatively large number
of compounds with CDK inhibition activity found in subregion P, supports its classification as a
CDK inhibitor region(see Table IX.). Such is the case for families of staurasporines, rapamycins,
and celphalostatins. The antineoplastic antibiotic rapamycin and its analogs are found in
subregion P, of the complete DTP map, at k11.26. Rapamycin’s role as a cyclin dependent
kinase modulator, based solely on its map location, distinguishes it from other antibiotics
that function to inhibit nucleic acid synthesis, mitosis or membrane function. Rapamycin has
recently been implicated as an inhibitor of mTOR kinase (also called FRAP and RAFT1),
which is an important regulator of cell cycle progression and growth, as part of the PI3K
pathway [100, 101]. The large number of co-clustered rapamycin analogs exhibit sufficient
structural similarities to suggest a common cellular target, i.e. mTOR. Another notable cluster
in the Py subregion includes the cephalostatins 1-9 at k14.26. This unique co-clustering of
these disteroidal alkaloid analogs supports our inference that their cellular activity results from
targeting a cyclin-dependent kinase. Recent work suggests that cephalostatins can function
as CDK4 kinase inhibitors, with a moderate activity for cephalostatin 1 of 20 uM [102]. Co-
clustering of structurally similar compounds appears to substantially strengthen this hypothesis
about cellular targets. Such examples may motivate additional investigations in the more
sparsely populated portions of Region P. Additional classes of steroidal compounds are found
throughout the P, N, and M Regions of the complete DTP map. Table X lists a number of
steroidal compounds found in Regions P and N, as well as esterdiols, found in Region M, at k1.4.
Recent literature now supports the cellular activity of estradiols as anti-tubulin agents [103],

consistent with its placement in Region M of our map.
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7.2 Subregion Ms: Antineoplastic Antibiotics

A large variety of antibiotics are known to have anti-tumor activity. Approximately a quarter
of these antibiotics are placed in Region S of the complete DTP map, while the remaining
compounds are in subregion M,. Antibiotics located in Region S appear to act as nucleic acid
and protein synthesis inhibitors to yield cellular response patterns similar to the broadly defined
classes of antimetabolites and alkylators. These similarities would be expected for antibiotics
such as mitomycin, which themselves contain alkylating moieties. The larger fraction of an-
tibiotics located in subregion M, include the aureolic acids, harringtonines, quassinoids, terfe-
nadines, trichothecenes, cyclosporines, bouvardins, didemnins, valinomycins and others. These
compounds are listed in Table X| and appear at the left edge of Figure 8B as orange hexagons..
Their location at the intersection of subregions M, Ny and Njp suggests their possible role
as membrane disrupting agents and/or cell cycle kinase agonists and antagonists. Antibiotics
that effect membrane ion transport include valinomycin, which acts directly on membranes
by shuttling chelated ions[104] and compounds which indirectly disrupt membrane integrity
such as the quassinoid, glaucarubolone, which‘ inhibits plasma membrane-associated NADH
oxidase [105] and thapsigargin, which inhibits an endoplasmic reticulum Ca?t-ATPase [106].
The remaining antineoplastic antibiotics include agents identified in experimental studies to
affect apoptotic and cell cycle pathways. An as example the trichothece mycotoxins have re-
cently been identified to induce apoptosis by triggering the ribotoxic stress response pathway
which activates kinases JNK/p38 to induce apoptosis [107]. Tetrocarcin A has been shown
to directly inhibit the anti-apoptotic function of Bcl-2 [108] while actinomycin D binds the
Grb2-SH2 complex [64]. Anisomycin also appears to activate stress pathways via activation of
JNK and p38 [109]. Mapping these antibiotics to locations that include and border regions des-
ignated to have functionalities as membrane disrupting agents, ion transport affecting agents
and cell cycle agents affecting apoptosis, raises interesting questions about relationships be-
tween these mechanisms and their roles in cell death. Previously anti-tumor antibiotics such as
actinomycin D and mythramycin were thought act primarily by binding to DNA and inhibiting
RNA and protein synthesis [57]. The location of these compounds in M, suggests alternate

hypothesis for their mode of action when compared to agents projected to the nucleic acid
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synthesis affecting region Ss3, such as streptonigrin and albacarcin V. Experimental validations

of these possible cellular activities are the subject of future data-mining efforts.

8 Cellular Chemo-Sensitivities

Our SOM analysis provides quantitative details useful for relating these results to the goals of
discovery, decision-making and explanation. The current screen is designed to identify relation-
ships between chemical and cellular response space; the subject of the above material. Another
class of questions, frequently the topic of previous analyses of the NCl's tumor screening data,
involves coherence of response within and between tumor cell panels. Answers to this question
are needed for the development of clinical strategies based on differentially expressed molecular
targets within classes of tumors [110, 111, 112, 2, 113]. Interest in this area is also motivated
by efforts to redesign the tumor cell screen towards either fewer numbers of tumor cells or to
more tailored screens focused on sensitivity to specific chemotypes. Questions about cellular
sensitivities can be addressed by simply inverting the design strategy presented in our current
analysis, i.e. rather than deriving information about chemical similarities from cellular patterns,
cellular similarities are now derived from chemical response patterns 3. Previously, this question
had been addressed using different subsets of the complete DTP database, and a variety of
alternative clustering methods [39, 40, 33, 31, 35, 10]. The following section summarizes our
efforts to better characterize the NClI's set of tumor cells that lend themselves to decisions of
this type.

Response similarities within each tumor panel are directly assessed by correlations of their
within-panel responses. Tumor panels exhibiting the highest correlations possess the most
similar response patterns. Figure 9 displays the panel averaged pairwise correlation coefficients
along its diagonal (Panel A). Our results find the LEU panel with the most similar response
patterns, followed by the CNS and COL panels; whereas, the most variable response patterns are
found within the OVA, BRE and LNS panels. These results are consistent with earlier analyses

that separately co-clustered the LEU, CNS and COL panels, while substantially integrating the

SMore technically, response space for N compounds across 80 tumor cell types is inverted to treat 80 cells

across N compounds.
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remaining seven tumor cell panels throughout different clusters [10, 35]. Measures of these
between panel correlations are displayed as off-diagonal elements in Panel A. These results
revealed modest positive correlations between the COL:LEU:SCL panels and the LNS:CNS
panels, and weak negative correlations between CNS and the LEU and COL panels. The
distribution means for the within and between panel correlations (cf. Fig 9 Panel B) are
0.22 and -0.02, respectively; neither significantly large enough to reject the hypothesis of zero
correlation between these tumor cell panels. The notion that some tumor panels demonstrate
coherent within-panel responses and that weak correlations could also be found between tumor
panels suggested a reanalysis of the complete DTP data set according to tumor cell type.
Figure 10 displays as hexagons each tumor panel's average (across 20K compounds) cellular
response at all 1066 nodes on the complete DTP map, colored according to sensitive(red)
and insensitive(blue) cellular activity; sized proportional to the magnitude of this activity.
Consistent with our earlier observations, the LEU panel exhibits the most correlated within-
panel responses, as reflected by the largely equally sensitive response at most node positions.
Furthermore, concordance between patterns of blue and red regions in these images reflect the
above noted positive correlations between the COL:LEU:SCL panels and negative correlations
between the LEU and COL panels.

These results provide an explanation for previously observed clustering results among these
tumor cell panels. Using sets of standard anticancer agents comprised of fewer than 200 com-
pounds, Keskin [35] and vanOsdol [39] found reasonable co-clustering within selected tumor cell
panels: results that generally concur with the most correlated tumor panels discussed above.
More recently, an analysis based on ~1400 anticancer compounds found cluster memberships
for these tumor cells to be quite different from previous analyses [10]. Inspection of Figure
10 offers an explanation for these differences. As noted earlier, the set of standard anticancer
agents associated with inhibition of nucleic acid biosynthesis are located at the lower right
portion of our map, in Region S. This region finds the LEU, LNS, REN and PRO panels to
exhibit qualitatively similar chemical sensitivities to agents that affect this pathway. Biochem-
ical reasbns for these chemical sensitivities can be found in additional studies. As an example,
cluster k40.25 contains topo Il agents as well as agents active as DNA polymerase and ribonu-

clease reductase inhibitors. The tumor cell panels most sensitive to these agents are the renal
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(REN) and non-small lung (LNS) panels. As discussed above, DNA polymerases are inhibited
by ara-C and other deoxycytidine analogs. Analogs of cytosine, especially those modified at
the 5-position, are known to reduce methylation of cytosine incorporated into DNA and lead to
maturation of the lung tumor cell line A549 [114], a result consistent with the high sensitivity
of the LNS panel to deoxycytidine analogs. In contrast, k37.22 consists largely of antifolate
compounds. The most sensitive tumor panels in this cluster are the colon (COL) and the renal
(REN) tumor cells. Antifolates are known to inhibit the purine biosynthesis folate-dependent
enzyme glycinimide ribonuclease transformylase [58] and induce differentiation of the colon cell
line HL-60 [115]. This effect may contribute to the enhanced sensitivity of the colon (COL)
and renal (REN) cell lines to antifolates. The clear message of these examples, as well as the
salient features of the ten tumor panels displayed in Figure 10, reveal the high dependence of
cellular response on the selected chemotype. These responses are quite variable, depending on
map location and tumor cell type, and are consistent with the notion that highly heterogeneous
chemical probes elicit a wide range of responses within different tumor panels. Overall, how-
ever, these similarities do not appear to be strongly correlated when analyzed over the complete
set of chemotypes tested in the screen. Numerous individual cases exist, however, where similar
cellular sensitivities (and insensitivities) are apparent, depending on chemotype. For example,
inspection of k1.11 identifies chemotypes with high cellular sensitivity to only the BRE panel,
while k10.12 selectively identifies chemotypes that are insensitive only to the BRE panel. Once
again, evidence that cellular response patterns are highly dependent on the chemotypes used
to probe their sensitivity. A more detailed analysis of the nature of these similarities often finds
that panel identity does not translate into response similarity. Explorations of the nature of
these differences will be the subject of future analyses. In general, however, this finding indi-
cates a limited capacity to associate chemotype with tumor panel response in these cell-based

screens.

9 SUMMARY

A suite of internet accessible (http://spheroid.ncifcrf.gov) computational tools has been as-

sembled for analysis and visualization of large multivariate data sets. A range of important
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analytical questions related to data analysis were addressed that found significant improvements
in cluster quality could be realized from data conditioning procedures of Z-score normalization,
capping and exclusion of missing data. Further analyses investigated the importance of com-
pleteness of cell lines in the screen and data degradation on cluster quality. These studies
provide a foundation for clustering analysis of the complete set of publicly available tumor
screening data. This analysis identified relationships between chemotypes of screened agents
and their effect on four classes of cellular activities: mitosis(M), nucleic acid synthesis(S),
membrane transport and integrity(N) and phosphatase and kinase mediated cell cycle regu-
lation(P). Validations of these cellular activities, obtained primarily from literature sources,
found i) strong evidence supporting within cluster memberships and shared cellular activity, ii)
indications of compound selectivity between various types of cellular activity and iii) strengths
and weaknesses of the NCl's tumor screen data for assigning compounds to these classes of
cellular activity. Subsequent analyses of averaged responses within these tumor panel types

finds a strong dependence on chemotype for coherence among cellular response patterns.
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10 Appendix: Evaluation of Clustering Quality

Drug screening patterns produce a vector of growth inhibition for the panel of cells in the screen.
These measures of diversity can range from no apparent differences to highly textured response
patterns reflecting little, intermediate and high levels of growth inhibition within the panel
of tumor cells. A considerable challenge to researchers analyzing this data is the problem of
evaluating the quality of clustering results based on these measures of diversity. At the heart of
this problem is the difficulty of evaluating whether measurement noise contributes significantly
towards the occurrence of random statistical correlations [19, 36]. Oftentimes duplicate tests
are run under the same experimental conditions and averaged results are presented [28]. This
approach contributes to the reduction of measurement noise but does not rigorously quantify
the noise components resulting from individual tests conducted at different times. Fortunately,
large scale screening efforts, such as the NCI's tumor screen, often contain essentially duplicate
data, in this case measuring compounds at slightly different test concentrations. These data
sets provide a means to assess the quality of different clustering methods. A key underlying
assumption in this analysis is that anticancer compounds measured at two slightly different
concentrations should yield a similar growth inhibition pattern; an assumption that should
remain true if each experiment is reproducible and dose dependent effects do not alter the
underlying biological response. Also, this analysis excludes results from extreme cases where
test concentrations are insufficient to either evoke a biological response or are conducted at
test concentrations that are lethal for all cell lines; each case yielding no diversity in the
biological response across cell types. Based on these assumptions, perfect clustering should
locate compounds tested in replicate at similar concentrations in the same cluster. The analysis
presented below will evaluate the performance of SOM clustering versus pairwise correlation

analysis to place replicate concentration tests in the same cluster.

The measurements for the set of EXMOA compounds presented earlier were used in our
analysis. Only data sets above the signal cut-off of 0.08 absolute deviation units across cell lines
were selected. This set yielded 214 replicate concentration tests. To construct a randomized
set of replicate concentration tests, all possible random pairings of compounds with replicate

concentration data were generated (N=21,156 random pairs). Random pairings were not
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permitted between identical compounds or compounds which shared the same mechanism of
action class. Table XII and Figure 11 displays the ability of the 3d MIND method and a
standard pairwise method (COMPARE®) to separate the replicate concentration pairs from the
randomized data set. Perfect clustering was found with the SOM method for 65 of the replicate
pairs, located 5.0 standard deviation units away from the mean of the randomized data set.
The leftmost open bar on Panel A in Figure 11 represents these pairs. An additional group of
10 compounds are found as nearest neighbors on the map at 2.5 standard deviation units from
the randomized set. Within this set of compounds only 24 of the 21,156 random pairs were
co-clustered with the replicate concentration pairs, to yield a false positive detection of only
0.11%. In total, the SOM method correctly identified 75 of the replicate concentration pairs
while rejecting 98.89% of the randomized pairs.

Clustering results based on pairwise correlation coefficients derived with the COMPARE
program are shown in Figure 11 Panel B. In this case, overlapping Gaussian-like distributions
characterized the results for the replicate concentration pairs and the randomized pairs. Above
a correlation coefficient of 0.888, or at least 3.0 standard deviation units from the population
mean of 0.31, 25 replicate concentration pairs were correctly identified, with only one false
positive in this set. At 2.6 standard deviation units (correlation coefficient > 0.754), 75
replicate concentration pairs were correctly found along with 279 of the randomized pairs, to
yield a 98.58% rejection rate for false positives. This apparently small difference in rejection
rate, however, translates into a large number of false positives; based on the set ~ 3 x 10*
compounds in the screen a 1.31% relative difference in rejection rate between the two methods
translates into ~400 additional false positives for comparisons based only on pairwise correlation

coefficients.

5The pairwise correlation analysis was completed with the
COMPARE tool at http://dtp.nci.nih.gov/docs/compare/cmpmatrix.html. The analysis of random pairs

was based on 11,210 unbiased samples selected from the total set of random pairs.
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Figure 1: )

Panel A: The conditioned growth inhibition (log(GIs)) data consists of an M x N matrix
of data elements. In the example above there are 533 data vectors (M = 533) for the EXMOA
data set (an extension of the 122 MOA set containing 362 compounds see text.) There are
80 components for each data vector measuring the response across the different cell lines
(N = 80). The data for two of the 80 dimensions for the 533 data vectors are shown as blue
dots. A set of P cluster vectors are chosen to represent the data space. The number of cluster
vectors and the map dimensions are selected according to the first two principle components
found with single value decomposition (SVD) analysis of this data. These cluster vectors are
shown as open red circles (in the example above P = 153.) Shown here are data for only 2 of

the 80 dimensions in our data vectors.

Panel B: SOM clustering of the initial coordinates shown in Panel A. The SOM cluster vectors

minimizes the distances between data(blue dots) and cluster vectors(red circles).

Panel C: To make the information contained in the high dimensional clustering space acces-
sible for drug discovery, the P clusters in N dimensions are projected on to a two dimensional
map. This mapping uses a non-linear function to transform the data such that each cluster
vector is uniformly represented in the two dimensional map. This reorganization stretches the

data space such that the map has a finer discrimination where more data is present.

Panel D: SOM cluster map for the EXMOA data set (see text). The standard anticancer
agents are clustered on to a 17x9 hexagonal array. The hexagons at each node position
correspond to the number of agents clustered at these loci. Cluster distances are indicated by
the colors between each node: close and far neighbors are separated by dark and light blue
colors, respectively. A horizontal line below row six indicates separation between agents that
act to disrupt mitosis form agents that act by inhibiting nucleic acid biosynthesis. Located in
map margins are 2-D structures of representative compounds in selected regions. For example,
the camptothecins are all located in the lower right portion of this SOM map. More information
on understanding the SOM map can be found in a short primer contained in the supporting

information section, and in the 3d Mind manual pages at http://spheroid.ncifcrf.gov.
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Figure 2: Sample of structure/function (S/F) correlation for different forms of data condition-
ing. Panel A: Z-score, capping and no alteration for unknown data(NaN). Panel B: Z-score, no
capping and no alteration for unknown data. Panel C: Z-score, no capping and replacement of
unknowns with group average (mean). Best cases occur for Z-score, capping and no alteration

for unknown data. The S/F correlation coefficient, p, is shown in each panel.

Figure 3: Structure/function (S/F) correlation versus ratio of map dimensions. The total
number of clusters was kept as near a possible to 153. Maximum average S/F correlations
occur for a ratio of map dimension of 1.89. This corresponds to the SOM map dimensions
of 17x9. The filled circles represent averages of correlation coefficient with the bars at the
25t and 75 percentiles. The open circles and dashed line represent the base case found for
each map ratio. The conventions for filled circles, bars, open circles, and dashed lines are used

throughout Figures 3 through 6.

Figure 4: Structure/function (S/F) correlation versus number of clusters. Repeat SOM maps
were generated for different cluster numbers. The solid line represents an exponential function
fitting of the data. The 99 percent asymptote occurs at 110 clusters (i.e. this level captures
99% of the possible S/F correlation.)

Figure 5: Structure/function (S/F) correlation versus number of cell lines. Highest correla-
tions occur for the greatest number of cell lines. Plateaus are observed in the average S/F
correlation for 50-60 cell lines and 20-30 cell lines. Fewer that 20 cell lines drastically reduce

the S/F correlation coefficient.

Figure 6: Structure/function (S/F) correlation versus data completeness (Panel A) and ver-
sus Z-score threshold (Panel B). Incomplete data sets are reasonably well tolerated above 60
percent. When greater that 40 percent of the data is removed, the S/F correlation declines
continuously. Lower panel displays correspondence between S/F correlation coefficient and

Z-score. Low Z-scores indicate a relatively flat cellular response pattern (low signal strength.)

Figure 7: Complete DTP map for the 20K compounds tested in the NCl's tumor cell screen.
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Map consists of 41x26 clusters. Color bar at lower right indicates distance between clusters
(red:close, black:intermediate, purple:far). Fifty regions have been defined on this map that
group together individual clusters with the most similar response profiles. These regions are
assigned to six functional categories according to their apparent cellular activity: mitosis(M),
nucleic acid synthesis(S), membrane transport and integrity(N), phosphatase and kinase me-
diated cell cycle regulation(P). Regions Q and R have not been assigned to an activity class.

See the text for details.

Figure 8:

Panel A: The projections onto the complete SOM map of a set of 171 clinically evaluated
anticancer agents. Shown on the map are the compound location (yellow hexagons), name-and
National Cancer Institute NSC identification number (given in parentheses) with abbreviation
labels correspondence; Mercaptopurines (k34.17): thioguanine(752), 6-mercaptopurine(755),
B-TGDR(71261), A-TGDR(71851) and ARA-6-MP(406021); Topo Il Inhibitors(k41.26): oxan-
thrazole(349174), acodazole hydrochloride(305884), deoxydoxorubicin(267469), rubidazone(164011),
doxorubicin/Adriamycin(123127), VM-26/teniposide(122819) and daunorubicin/daunomycin(82151);
and, Bifunctional Alkylating Agents (k28.25): chlorambucil(3088), thio-tepa(6396), melpha-
lan(8806), triethylenemelamine(9706), pipobroman(25154), uracil nitrogen mustard(34462),
Yoshi-864(102627), dianhydrogalatitol(132313), piperazinedione(135758), AZQ(182986), terox-
irone(296934) and hepsulfam(329680). The location of a compound is given by its map co-
ordinates, for example, rhizoxin (NSC identification number 332598) is projected to the upper

left at the loci k5.1 (5 rows down in the first column).

Panel B: Locations of compounds on the complete SOM map according to their cellular
activity. Highlighted regions represent map clusters where assigned cellular activity is supported
by literature references. Shown are a subset of molecular activity classes corresponding for a
number of the M,N,P and S sub-regions (see text for details.) The size of the colored hexagons
represents the number of data vectors belonging to that class found at that map coordinate, for
example, the taxanes are found chiefly at k9.1 and k9.2 (large cyan hexagons), but a few are

also found at k8.1 and k10.1 (small cyan hexagons.) The shown hexagons represent a subset
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of both regions and classes contained in the SOM map. The complete map can be explored

via the internet at http://spheroid.ncifcrf.gov.

Figure 9:

Panel A: Averaged intra and inter-panel pairwise correlation coefficients. Values along the
diagonal represent average intra-panel pairwise correlation coefficients. For example, the SCL
tumor cells exhibit the highest intra-panel correlation coefficient, while the LEU and COL tumor
cells exhibit the lowest value. Values above the diagonal represent the averaged inter-panel
pairwise correlation coefficients. For reference, the LEU:CNS and LNS:CNS panels are the most
negatively and positively correlated tumor panels. The values above and below the diagonal

are identical and are shown with two different scales for ease of interpretation.

Panel B: Histogram of pairwise correlation coefficients. Intra-panel correlations are shown in
solid gray bars while inter-panel correlations are shown in open black bars. Mean and standard
deviation values for the intra- and inter-panel distributions are 0.18 & 0.16 and —0.2 &+ 0.186,

respectively.

Figure 10: Intra-panel averaged responses superimposed on the complete SOM map. The
hexagon located at each of the 1066 map clusters displays tumor panel’s average response
to 20K compounds, colored, according to sensitive(red) and insensitive(blue) cellular activity;

sized proportional to the magnitude of this activity.

Figure 11:

Panel A: Histograms of pairwise correlation coefficients obtained from random pairs of cellular
responses and concentration pairs from the same compound. Duplicate concentration pairs are
shown as open bars and the 'random pairs’ are shown as closed gray bars. The leftmost open
bar identifies the most similar pairs, those with a zero distance apart (in the same cluster).
Cluster definitions are based on SOM analysis. There are 65 duplicate concentration pairs in
this first bar. This bar is 5.0 standard deviation units away from the random pair mean of 9.9.
The random pairs uses the scaling factor of 32.4, with the maximal number of pairs of 2236 at

a distance of 11.1. There are 241 duplicate concentration pairs and 21,156 random pairs. The

49



lower plot (black bars) shows the fraction of pairs that contains a data vector with low signal
strength (less than 0.15 units of absolute deviation). The fraction increases to the right with

increasing distance likely indicating the decreasing reliability of the pairing.

Panel B: Histograms of pairwise correlation coefficients based on random (gray) and duplicate
concentration pairs (open black). Correlation coefficients are obtained using the COMPARE
program. The most and least similar pairs appear at the leftmost and rightmost portions of the
graph, respectively. The random pairs uses the scaling factor of 15.7, with the maximal number
of pairs of 1082 at a correlation coefficient of 0.258. There are 241 duplicate concentration
pairs and an a sample of 11,210 random pairs. These random pairs are an unbiased sample of
the complete set of random pairs (21,156 pairs). As above, the lower plot (black bars) shows
the fraction of pairs that contains a data vector with low signal strength (less than 0.15 units

of absolute deviation).

50




Table I. Data Conditioning Structure/Function Correlation

Missing Treatment Normalization  Capping | S/F Corr. Mean | S/F Corr. Std. Dev | No. Map Samples
NaN Raw No Cap 0.7820 0.0648 20
NaN Z-score No Cap 0.9002 0.0182 40
NaN Z-score Cap + 3 0.9185 0.0147 40
Mean Z-score Cap+ 3 0.8654 0.0339 40

Multiple SOM maps were generated from random starting conditions for different combinations

of data conditioning with respect to normalization(Raw vs. Z-score), capping (none vs. +3) and

treatment of missing data (replace with mean vs. NaN:unknown). The correlation coefficient is

determined between each of these SOM maps and the SOM clustering based on the structural

descriptors. The basis of this comparison is that maps with the highest structure/function

correlations are most desirable (the best treatment is shown in bold face.) Values represent

averages for total number of samples.
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Table ll. Anti-folates
Cluster

Structure Region Loci NSC #

740 680399
3073 682306
174121 687352
N, 607301 690436
623017 694477
626715 694478
633713 694480
654830 694481
666783 694482
667640 694483
667641 694484
669270 694485
Methotrexates 672140 694775
672141 695788

677942

P 3061 382034

3062 382035

7364 382044

302305 382046

S4:$§: 319947 382049

330465 382053

372939 332054

372944 602313

Pyremethamines 372950 602314
382032

HN k37.22
o S4 k38.22




Table fil._IMPDH
Agents

Cluster

Structure Region Loci NSC#

Tiazofurin
Selofurin
"

Cordycepin

Mycophenolic acid

H
6-mercaptopurine,
6-thioguanine

Qs

Ka7.14
k3,13 286193

k38.13 340847

k37.14 63984

k37.20 129185

752
755
48388
k34.17 71261
71851
406021
647471




Table IV.Ribonuclease

Reductase Agents

Cluster
Structure Region Loci
H
HN_ N
\lcl)/ OH S3 k39.25
Hydroxyurea
el
{_n-n K39.25
Pyrazoloimidazole (IMPY)
H NH,
N
HoN \”/
2 —‘<\N N k39.25
Guanazole
0
H
qz.ﬁg Ao
N, k32.22
0o
HoN
o H
Deferoxamine
N
I N W A k31.23
ZN Na ) k32.22

Terpyridine

51143

1895

268993

640499
640500
676944




Table V. Mitotic Agents
* Cluster

Structure Redion Loci

%éﬂ -

k3.1
k3.2
M e
k5.2

Trimethoxystilbenes

NSC #

125973
600220
600221
600222
600223
608832
628503
647752
647753
651195
651196
653244

757
9170
33410
33411
172946
186301
221662
249278
315260
320301
328403
335989
343493

638490
638494
638485
638492
638488
641484
638403

654374
656177
658831
661746
662158
662159
662160
662161
664401
664402
664403
etc.

352277
373031
373032
374979
374980
376251
612115
612116
618049
353494
354974
354975
etc.

638486
638411
638390
638404
638499
638493

M1
Peltatins
M1
Rhizoxin
H
h M1
Nocodazole

5

k1.2
k5.1
k5.2
k6.2

k5.1

k1.1

24819
126727
610385

332598

238159




Table VI.Channel Agents 4 -
Cluster -
Structure Region Loci  NSC# (O P14 k74 200810
k/é/\ Nio K98 632821 Prazosin
c k11.8 657799
Verapamil — N10 k11.8 665800
\
Diphenylhydramine
N10 k9.7 170984
N10 k11.8 665802
HO
77;33‘75 251534 Terfenadine
91771 269189 {
93135 369310
Nio K66 gic7s 615580 N P11 k9.12 354467
k7.8 629742 TN
P13 o, 97338 620744 )
7 105130 Metoclopramide
105131 629745 665340
Tetrandrines 135070 529746 665740
{fangchinoline, oxyacanthine, 189487 545315 o 665742
funiferine) - N"\O 665759
; N11 k811 665771
I k8.7 36413 Lb 665789
Nio ko8 68075 - 665862
k108 146267 Spiperones 665863
ki1.6 209759 665873
Dauricine, Thalicarpine
% k9.6 17473
N N10 k9.7 14050 —NC)* N10 gﬁ 64533‘?;3
Chioroquine Diphosphate Phenothiazines k118 665801
{Proctﬂorperazine,FluorOPhenoﬂﬁazine,
Trifluopromazine, Clopenthixol}
% 56
% k96 14574
N10 107 20834

%_/‘"’o

Lucanthone




.Jable VII._Golgi
Disrupting Agents

Cluster
Structure Region Loci
N11 ki12.10
P11 k9.16
Brefeldin A
N11 k11.12
P7 k11.17
. N1 k242
N3 k282
Cytochalasins A,D EH
M2 k10.1
N7 k166
Okadaic acid
N12 k17.8
k19.5
Limaquinone, llimaquinone
b\_}% s

Avarol

NSC #

56310
89671
656202
657326
671928

174119
175151
209835
305222

677083

311040
647642

306951

M2 Ko.3

Thapsigargine
kit.12
NIt 11a

Cucurbitacins

299933

49451

49452

94743
106399
112166
112167
144153
308606
521777




Table Viil. Cell Cycle
P Region Agents

%\N P13 k6.8 675266
“om

. Cluster
T ’ Structure Region Loci NSC #
Cytostatin
337591
239072 N 601679 643827
266186 605583 843828
P13 k6.9 329507 614383 648156
330875 , P12 K7.11 o5 0o 669265
Phorbols 623310 624873 669266
{Mezerein, Huratoxin, Miitefosin C Perifosine 639966 678144
Prostratin} 643826 688027
. 650426
H p P12 k7.11 65104
P13 k6.9 252940 N11ki1.14 268251
. 669263
KRN5500, Septacidin
Gnidimacrin N
H
P12 k4.11 339555
P13 k6.9 654239
Cyloblastin Bryostatin 1
ui}l}‘\_r’_f P13 k6.8 339638 /7%? P12 k512 375489
Fostriecin ° .
Forskolin
el £
; :% ; P12 k5.12 627609
Wortmannin
W P12 k4.1 4060

Ur_solic acid

E




e

Table IX. Cyclin Dependent

Kinase Agents
Structure

bt

Staurosponne UCN-01

O

Olomoucine

57

Compactin, Lovastatin
Simvastatin

st

Paullone Analog

Cluster
Region loci NSC #

p2 k10.22 618487
k10.23 638850

P1 Ki8.26
R4 k3021 666096

281245
P2 k12.24 633781
633782

P2 k1124 672231

Rapamycin

Cephalostatins

P2 k11.26

P2 ki4.26

226080
606698
606699
643248
683864

363979
363980
363981
378727
378731
378732
378734
378735
378736




Table X. Steroids

NSC #

667048 682429
669229 682505
669231 682597
671042 683125
673652 683688
678473 684423

k4.17 k8.15
12174 12600
13397 33001
34521 47438

77021

677955 677961
677956 677962
677957 677963
677959 689620
677960 689621

49451
49452

94743
106399
112166
112167
144153
308606
521777

Cluster
. Structure Region Loci
Estradiols
R=CH,OH R=H or Ester
P6 k4.17
P11 k8.15
63549 -
.- . Predisolones
o 87
O,Céigﬁ o o
Cycloprotobuxine Analogs
Ht
k11.12
N111113
Cucurbitacins

Hi
Proscillaridins

ki15.17
k16.17

7521

7525

7534
93134
123976
135036
135077
135687
135688
135689
143925
234669
243022
251692

251698
345646
364373
619323
648338

650471
656598
664161
676514
677588
682561
688285
694454




Jable Xi. M Region
Antibiotics
N Cluster HO,
1 Structure Beqgion Loci NSC # 124147
41634
OH
138780 656902 Haricaton
o o\( 141537 656903 arringtonines
269142 656904
. O M2 K115 >76571 673352 %
. , 294913 673353 \< P11 k8.12 76712
Trichothecenes {T-2 Toxin,
Anguidine, Scirpentriol, 656901 673354 HN M2 k9.4 147340
Ht-2 Toxin,Bruceoside E,F} Anisomycin
o 3053 671030
126728 291312 87221 671031
HO 269753 292463 87222 671032
269754 327993 237106 671033
M2 K115 oao7e6 328166 237671 684901
k124 269757 328167 M2 K100 330281 684902
/ 269760 375726 k11.4 650470 684903
‘ == 283445 604976 ggggs gg:ggg
0
Verrucarin A M“"°"‘V°'"s 668475 684907
14975 . 668476 684908
126765 41651 k1.1 70845 143491
126765 364170 pio k3.3 82151 265211
HO 364170 { k9.4 86005 265450
M2 k124 132791 M2
HO 267709 368671 L : N1 K03 102815 267469
Ho |8 OH 279503 m L, © ki14 112929 639655
. K10.12 116555 670120
Glaucarubin, Holacanthone 290494 Nogamycins
L o
24559
k9.3 38270
o2 58514
M2 102 76411
on Ki1o 143020
269146
Aureolic acids {Mithramycin, _ 526598

Olivomycin, Chromomycin A3,
Variamycin}




Table XII. Replicate Concentration Pairs Test

3d Mind COMPARE
Duplicate Pairs® (Euclid. Dist.) | Z-score® | Random Pairs® || Duplicate Pairs® (Corr. Coeff.) | Z-score® | Random Pairs?
25 (0.0) 5.0 24 25 (0.88) 3.0 0
50 (0.0) 5.0 24 50 (0.81) 2.6 77
75 (4.5) 2.7 24 75 (0.75) 23 279
100 (5.2) 24 323 100 (0.69) 20 621
125 (6.6) 17 1414 125 (0.64) 17 1038

®Duplicate pairs consist of all compounds from the Extended Mechanism of Action (ExXMOA)
set which have been measured at different maximum concentration levels.

5All pairings of compounds from the DTP Mechanism of Action set which differ in mechanism
of action class. All data vectors have a signal strength greater than 0.08 absolute deviation
units.

¢ Zscore = (p — ) /o where p is the Euclidian distance (3d Mind) or the correlation coefficient
(COMPARE), p is the mean of the random pairs, and o is the standard deviation of the random
pairs. For example, a Z-score of 5.0 indicates five standard deviation units more similar than
the mean for the random pairs. The value in the table is the Z-score of the last qualifying pair.
¢ The COMPARE random pairs have been normalized by sample size, normalizing ratio is
1.89, unnormalized random pairs 0, 41, 148, 329, 550 for duplicates 25, 50, 75, 100, and 125

respectively.
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Note: Tables II-XI are generated from Microsoft Word files

Table Il FOLS
Table Il IMP

Table IV RR

Table V MIT

Table VI CH

Table VII GOL
Table VIl PoKin
Table IX CDK
Table X STER
Table XI ANTIBOIS
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Fig 3.
| Structure/Function Correlation
vs. Map Dimensions
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Fig. 4

Structure/Function Correlation
vs. Number of Clusters
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Fig. 5 _ _
Structure/Function Correlation

vs. Number Cell Lines
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- Fig 6. Structure/Function Correlation

vs. Degradation of Data Set
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